Tài nguyên

Chào mừng quý vị đến với Ngô Văn Chinh - Ươm mầm tương lai!.

Quý vị chưa đăng nhập hoặc chưa đăng ký làm thành viên, vì vậy chưa thể tải được các tư liệu của Thư viện về máy tính của mình.
Nếu đã đăng ký rồi, quý vị có thể đăng nhập ở ngay ô bên phải.

Chuyen de boi duong HSG Toan 8.doc

Wait
  • Begin_button
  • Prev_button
  • Play_button
  • Stop_button
  • Next_button
  • End_button
  • 0 / 0
  • Loading_status
Nhấn vào đây để tải về
Báo tài liệu có sai sót
Nhắn tin cho tác giả
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Huỳnh Văn Lập (trang riêng)
Ngày gửi: 21h:45' 01-01-2011
Dung lượng: 604.5 KB
Số lượt tải: 48
Số lượt thích: 0 người
1. Chuyên đề : Đa thức
Bài 1: Tính giá trị của biểu thức:
A =  tại x = 16.
B =  tại x = 14.
C =  tại x = 9
D =  tại x = 7.
Bài 2: Tính giá trị của biểu thức:
M = 
N = 
Bài 3: Tính giá trị của biểu thức:
A =  với x = 2; .
M.N với .Biết rằng:M = ; N = .
Bài 4: Tính giá trị của đa thức, biết x = y + 5:
a. 
b. 
Bài 5: Tính giá trị của đa thức:
 biết x+ y = -p, xy = q
Bài 6: Chứng minh đẳng thức:
a.  ; biết rằng 2x = a + b + c
b.  ; biết rằng a + b + c = 2p
Bài 7:
Số a gồm 31 chữ số 1, số b gồm 38 chữ số 1. Chứng minh rằng ab – 2 chia hết cho 3.
Cho 2 số tự nhiên a và b trong đó số a gồm 52 số 1, số b gồm 104 số 1. Hỏi tích ab có chia hết cho 3 không? Vì sao?
Bài 8: Cho a + b + c = 0. Chứng minh rằng M = N = P với:
; ; 
Bài 9: Cho biểu thức: M = . Tính M theo a, b, c, biết rằng .
Bài 10: Cho các biểu thức: A = 15x – 23y ; B = 2x + 3y . Chứng minh rằng nếu x, y là các số nguyên và A chia hết cho 13 thì B chia hết cho 13. Ngược lại nếu B chia hết cho 13 thì A cũng chia hết cho 13.
Bài 11: Cho các biểu thức: A = 5x + 2y ; B = 9x + 7y
Rút gọn biểu thức 7A – 2B.
Chứng minh rằng: Nếu các số nguyên x, y thỏa mãn 5x + 2y chia hết cho 17 thì 9x + 7y cũng chia hết cho 17.
Bài 12: Chứng minh rằng:
a.  chia hết cho 405.
b.  chia hết cho 133.
Bài 13: Cho dãy số 1, 3, 6 , 10, 15,…, , …
Chứng minh rằng tổng hai số hạng liên tiếp của dãy bao giờ cũng là số chính phương.

2. Chuyên đề: Biển đổi biểu thức nguyên

I. Một số hằng đẳng thức cơ bản
(a ( b)2 = a2 ( 2ab + b2 ;
(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca ;

=
(a ( b)3 = a3 ( 3a2b + 3ab2 ( b3 = a3 ( b3 ( 3ab(a ( b);
(a ( b)4 = a4 ( 4a3b + 6a2b2 ( 4ab3 + b4 ;
a2 – b2 = (a – b)(a + b) ;
a3 – b3 = (a – b)(a2 + ab + b2) ;
an – bn = (a – b)(an – 1 + an – 2b + an – 3b2 + … + abn – 2 + bn – 1) ;
a3 + b3 = (a + b)(a2 – ab + b2)
a5 + b5 = (a + b)(a4 – a3b + a2b2 – ab3 + b5) ;
a2k + 1 + b2k + 1 = (a + b)(a2k – a2k – 1b + a2k – 2b2 – … + a2b2k – 2 – ab2k – 1 + b2k) ;
II. Bảng các hệ số trong khai triển (a + b)n – Tam giác Pascal
Đỉnh





1






Dòng 1 (n = 1)




1

1





Dòng 2 (n = 2)



1

2

1




Dòng 3 (n = 3)


1

3

3

1



Dòng 4 (n = 4)

1

4

6

4

1


Dòng 5 (n = 5)
1

5

10

10

5

1

 Trong tam giác này, hai cạnh bên gồm các số 1 ; dòng k + 1 được thành lập từ dòng k (k ≥ 1), chẳng hạn ở dòng 2 ta có 2 = 1 + 1, ở dòng 3 ta có 3 = 2 + 1
 
Gửi ý kiến